USN | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10CV45

Fourth Semester B.E. Degree Examination, July/August 2022

Hydraulics and Hydraulic Machines

Time: 3 hrs.
Max. Marks:100
Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Give examples of dimensionally homogeneous and non-homogeneous equations. (04 Marks)
b. Fluid of density ' ρ ' and viscosity ' μ ' flows at an average velocity ' V ' through a circular pipe of diameter ' D '. Show by using Buckingham's π-theorem of dimensional analysis, that the shear stress ' τ ' at the pipe wall :

$$
\tau=\rho V^{2} \phi\left(\frac{\rho V D}{\mu}\right)
$$

(08 Marks)
c. A 8 m high and 15 m long spillway discharges $100 \mathrm{~m}^{3} / \mathrm{s}$ under a head of 2 m . If $1: 10$ scale model of this spillway is to be constructed, determine model dimensions, head over spillway model, and model discharge. If model experiences a force of 5 kN , determine the force on the prototype.
(08 Marks)

2 a. What is an open-channel? Give the types of open-channel.
(06 Marks)
b. Derive the conditions under which the rectangular section of an open-channel will be most economical.
(07 Marks)
c. Design a most economical earthen trapezoidal channel for water having a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. The side slope of the channel 1.5:1 and quantity of water flowing is $3 \mathrm{~m}^{3} / \mathrm{s}$. Assume ' C ' in Chezy's formula as 65 .
(07 Marks)

3 a. Define specific energy. Does it vary at different sections for uniform flow through a channel?
(04 Marks)
b. A rectangular channel 1 m wide and the discharge of water through it, is estimated to be $1530 \mathrm{~m}^{3} / \mathrm{h}$. The depth of flow at a section is 10 cm . If a hydraulic jump occurs, calculate:
(i) Froude number before and after the jump.
(ii) Height and length of hydraulic jump
(iii) Loss of head and power dissipated.
(08 Marks)
c. Show that in an open-channel of constant width, the slope of water surface with respect to bed is given by,

$$
\frac{d y}{d x}=\frac{\left(S_{o}-S_{f}\right)}{\left[1-\left(\frac{V^{2}}{g y}\right)\right]}
$$

where ' y ' is the depth of flow; ' S_{o} ' is the slope of the channel bed; ' S_{f} ' is the friction loss per unit length; ' V ' is the velocity flow.
(08 Marks)

4 a. Differentiate between the force exerted by a jet of water on a fixed vertical plate and moving vertical plate with neat sketches.
(06 Marks)

10CV45
b. A 75 mm diameter jet having a velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a flat plate, the normal of which is inclined at 45° to the axis of the jet. Find the normal pressure on the plate.
(i) When the plate is stationary
(ii) When the plate is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of jet, away from the jet. Also determine the power and efficiency of the jet when the plate is moving.
(08 Marks)
c. A jet of water 25 mm diameter strikes a hinged flat plate normally at $30 \mathrm{~m} / \mathrm{s}$, at a point 150 mm below the hinged plate. What force should be applied 100 mm below the axis of the jet, in order to keep the plate vertical?
(06 Marks)

PART - B

5 a. Prove that for a jet striking a moving curved vane tangentially at one tip and leaving at the other tip. The work done per second per unit weight is given by, W.D $=\frac{1}{\mathrm{~g}}\left[\mathrm{~V}_{\mathrm{W}_{1}} \pm \mathrm{V}_{\mathrm{W}_{2}}\right] \times \mathrm{u}$. Assume vanes are smooth.
(12 Marks)
b. A jet of water 60 mm diameter strikes a cûrved vane at its centre. The curved vane is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of jet. If the velocity of jet is $22 \mathrm{~m} / \mathrm{s}$ and it is deflected through an angle of 160°. Assuming plate to be smooth, determine:
(i) Force exerted on the vane in the direction of the jet.
(ii) Power of the jet.
(iii) Efficiency of the jet.
(08 Marks)
6 a. How do you classify hydraulic turbines? Give one example for each type.
(10 Marks)
b. A pelton wheel has to be designed for the following data:
(i) Power to be developed : 6000 KW
(ii) Net available head : 300 m
(iii) Speed of turbine : 555 RPM
(iv) Ratio of jet diameter to wheel diameter : $\left(\frac{1}{10}\right)$
(v) Coefficient of velocity for nozzle : 0.98
(vi) Speed ratio : 0.46

Find the number of jets, diameter of the wheel and the quantity of water required. ($\mathbf{1 0} \mathbf{~ M a r k s)}$
7 a. List the advantages of Kaplan turbine over Francis turbine.
(04 Marks)
b. The following data refers to the runner of a Kaplan turbine which yields 8850 KW at the turbine shaft:
(i) Net available head $=5.5 \mathrm{~m}$
(ii) Speed ratio $\left(\mathrm{K}_{\mathrm{u}}\right)=2.1$
(iii) Flow ratio $\left(\mathrm{K}_{\mathrm{f}}\right)=0.67$
(iv) Ratio of hub diameter to outside diameter $=0.35$.

Calculate the runner diameter and its rotational speed.
(06 Marks)
c. A conical draft tube having an inlet and outlet diameters of 1.2 m and 1.8 m discharges water at outlet with a velocity of $3 \mathrm{~m} / \mathrm{s}$. The total length of draft tube is 7.2 m . The length of draft tube immersed in water is 1.44 m . If the atmospheric pressure head is 10.3 m of water and loss of head due to friction is equal to $0.2 \times$ velocity head at outlet of the tube, determine:
(i) Pressure head at the inlet of the draft tube
(ii) Efficiency of draft tube.

8 a. Explain the following terms with respect to centrifugal pump
(i) Static head
(ii) Manometric head
(iii) Multistage pumps in series
(iv) Multistage pumps in parallel
(v) Overall efficiency of a pump
(10 Marks)
b. A centrifugal pump impeller having external and internal diameters 500 mm and 250 mm respectively is running at 1000 rpm . The rate of flow through the pump is $0.06 \mathrm{~m}^{3} / \mathrm{s}$ and velocity of flow is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The diameters of the suction and delivery pipes are 180 mm and 120 mm respectively, and suction and delivery heads are 6.2 m (absolute) and 30.2 m (absolute) respectively. If the power required to drive the pump is 25 KW and the outlet vane angle is 45°. Determine:
(i) Inlet vane angle
(ii) The overall efficiency of the pump
(iii) Manometric head
(iv) The manometric efficiency of the pump

